Loss of the parkinsonism‐associated protein FBXO7 in glutamatergic forebrain neurons in mice leads to abnormal motor behavior and synaptic defects

2023 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Loss of the parkinsonism‐associated protein FBXO7 in glutamatergic forebrain neurons in mice leads to abnormal motor behavior and synaptic defects​
Wang, J.; Joseph, S.; Vingill, S.; Dere, E.; Tatenhorst, L.; Ronnenberg, A. & Lingor, P. et al.​ (2023) 
Journal of Neurochemistry, art. jnc.15962​.​ DOI: https://doi.org/10.1111/jnc.15962 

Documents & Media

License

GRO License GRO License

Details

Authors
Wang, Jingbo; Joseph, Sabitha; Vingill, Siv; Dere, Ekrem; Tatenhorst, Lars; Ronnenberg, Anja; Lingor, Paul; Preisinger, Christian; Ehrenreich, Hannelore; Schulz, Jörg B.; Stegmüller, Judith
Abstract
Abstract Mutations in PARK15 , which encodes for the F‐box protein FBXO7 have been associated with Parkinsonian Pyramidal syndrome, a rare and complex movement disorder with Parkinsonian symptoms, pyramidal tract signs and juvenile onset. Our previous study showed that systemic loss of Fbxo7 in mice causes motor defects and premature death. We have also demonstrated that FBXO7 has a crucial role in neurons as the specific deletion in tyrosine hydroxylase‐positive or glutamatergic forebrain neurons leads to late‐onset or early‐onset motor dysfunction, respectively. In this study, we examined NEX‐ Cre ; Fbxo7fl/fl mice, in which Fbxo7 was specifically deleted in glutamatergic projection neurons. The effects of FBXO7 deficiency on striatal integrity were investigated with HPLC and histological analyses. NEX‐ Cre ; Fbxo7fl/fl mice revealed an increase in striatal dopamine concentrations, changes in the glutamatergic, GABAergic and dopaminergic pathways, astrogliosis and microgliosis and little or no neuronal loss in the striatum. To determine the effects on the integrity of the synapse, we purified synaptic membranes, subjected them to quantitative mass spectrometry analysis and found alterations in the complement system, endocytosis and exocytosis pathways. These neuropathological changes coincide with alterations in spontaneous home cage behavior. Taken together, our findings suggest that FBXO7 is crucial for corticostriatal projections and the synaptic integrity of the striatum, and consequently for proper motor control. image
Issue Date
2023
Journal
Journal of Neurochemistry 
ISSN
0022-3042
eISSN
1471-4159
Language
English
Sponsor
Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659

Reference

Citations


Social Media