Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones

2018 | journal article

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones​
Neef, J. ; Urban, N. T. ; Ohn, T.-L. ; Frank, T. ; Jean, P.; Hell, S. W.   & Willig, K. I.  et al.​ (2018) 
Nature Communications9(1) art. 290​.​ DOI: https://doi.org/10.1038/s41467-017-02612-y 

Documents & Media

s41467-017-02612-y.pdf4.03 MBAdobe PDFSupplementary Data2.55 MBAdobe PDFSupplementary Data1.88 MBAdobe PDF

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Neef, Jakob ; Urban, Nicolai T. ; Ohn, Tzu-Lun ; Frank, Thomas ; Jean, Philippe; Hell, Stefan W. ; Willig, Katrin I. ; Moser, Tobias 
Abstract
Ca2+ influx triggers the release of synaptic vesicles at the presynaptic active zone (AZ). A quantitative characterization of presynaptic Ca2+ signaling is critical for understanding synaptic transmission. However, this has remained challenging to establish at the required resolution. Here, we employ confocal and stimulated emission depletion (STED) microscopy to quantify the number (20–330) and arrangement (mostly linear 70 nm × 100–600 nm clusters) of Ca2+ channels at AZs of mouse cochlear inner hair cells (IHCs). Establishing STED Ca2+ imaging, we analyze presynaptic Ca2+ signals at the nanometer scale and find confined elongated Ca2+ domains at normal IHC AZs, whereas Ca2+ domains are spatially spread out at the AZs of bassoon-deficient IHCs. Performing 2D-STED fluorescence lifetime analysis, we arrive at estimates of the Ca2+ concentrations at stimulated IHC AZs of on average 25 µM. We propose that IHCs form bassoon-dependent presynaptic Ca2+-channel clusters of similar density but scalable length, thereby varying the number of Ca2+ channels amongst individual AZs.
Issue Date
2018
Journal
Nature Communications 
ISSN
2041-1723
Language
English

Reference

Citations


Social Media