Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

2017 | journal article

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography​
Coquelle, N.; Sliwa, M.; Woodhouse, J.; Schirò, G.; Adam, V.; Aquila, A. & Barends, T. R. M. et al.​ (2017) 
Nature Chemistry10(1) pp. 31​-37​.​ DOI: https://doi.org/10.1038/nchem.2853 

Documents & Media

License

GRO License GRO License

Details

Authors
Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce; Schirò, Giorgio; Adam, Virgile; Aquila, Andrew; Barends, Thomas R. M.; Boutet, Sébastien; Byrdin, Martin; Carbajo, Sergio; De la Mora, Eugenio; Doak, R. Bruce; Feliks, Mikolaj; Fieschi, Franck; Foucar, Lutz; Guillon, Virginia; Hilpert, Mario; Hunter, Mark S.; Jakobs, Stefan ; Koglin, Jason E.; Kovacsova, Gabriela; Lane, Thomas J.; Lévy, Bernard; Liang, Mengning; Nass, Karol; Ridard, Jacqueline; Robinson, Joseph S.; Roome, Christopher M.; Ruckebusch, Cyril; Seaberg, Matthew; Thepaut, Michel; Cammarata, Marco; Demachy, Isabelle; Field, Martin; Shoeman, Robert L.; Bourgeois, Dominique; Colletier, Jacques-Philippe; Schlichting, Ilme; Weik, Martin
Abstract
Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.
Issue Date
2017
Journal
Nature Chemistry 
ISSN
1755-4330
Language
English

Reference

Citations


Social Media