Disentangling the multiorbital contributions of excitons by photoemission exciton tomography

2024 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Disentangling the multiorbital contributions of excitons by photoemission exciton tomography​
Bennecke, W.; Windischbacher, A.; Schmitt, D.; Bange, J. P.; Hemm, R.; Kern, C. S. & D`Avino, G. et al.​ (2024) 
Nature Communications15(1) art. 1804​.​ DOI: https://doi.org/10.1038/s41467-024-45973-x 

Documents & Media

License

GRO License GRO License

Details

Authors
Bennecke, Wiebke; Windischbacher, Andreas; Schmitt, David; Bange, Jan Philipp; Hemm, Ralf; Kern, Christian S.; D`Avino, Gabriele; Blase, Xavier; Steil, Daniel ; Steil, Sabine; Aeschlimann, Martin; Stadtmueller, Benjamin; Reutzel, Marcel ; Puschnig, Peter; Jansen, G. S. Matthijs ; Mathias, Stefan 
Abstract
Excitons are realizations of a correlated many-particle wave function, specifically consisting of electrons and holes in an entangled state. Excitons occur widely in semiconductors and are dominant excitations in semiconducting organic and low-dimensional quantum materials. To efficiently harness the strong optical response and high tuneability of excitons in optoelectronics and in energy-transformation processes, access to the full wavefunction of the entangled state is critical, but has so far not been feasible. Here, we show how time-resolved photoemission momentum microscopy can be used to gain access to the entangled wavefunction and to unravel the exciton’s multiorbital electron and hole contributions. For the prototypical organic semiconductor buckminsterfullerene (C60), we exemplify the capabilities of exciton tomography and achieve unprecedented access to key properties of the entangled exciton state including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics.
Issue Date
2024
Journal
Nature Communications 
Project
SFB 1456: Mathematik des Experiments: Die Herausforderung indirekter Messungen in den Naturwissenschaften 
SFB 1456 | Cluster B | B01: Mathematics of atomic orbital tomography 
Organization
I. Physikalisches Institut - Tieftemperaturphysik 
Working Group
RG Mathias (Ultrafast Dynamics) 
eISSN
2041-1723
Language
English
Sponsor
Alexander von Humboldt-Stiftung http://dx.doi.org/10.13039/100005156
Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
Austrian Science Fund http://dx.doi.org/10.13039/501100002428

Reference

Citations


Social Media