Application of in-situ gamma spectrometry for radiogenic heat production estimation in the Western Himalaya, Kohistan, and Karakoram in northern Pakistan

2023-10-27 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Application of in-situ gamma spectrometry for radiogenic heat production estimation in the Western Himalaya, Kohistan, and Karakoram in northern Pakistan​
Anees, M. ; Kley, J. ; Leiss, B. ; Hindle, D. ; Wajid, A. A.; Wagner, B. & Shah, M. M. et al.​ (2023) 
Geothermal Energy11(1) art. 29​.​ DOI: https://doi.org/10.1186/s40517-023-00273-3 

Documents & Media

40517_2023_Article_273.pdf7.09 MBAdobe PDF

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Anees, Muhammad ; Kley, Jonas ; Leiss, Bernd ; Hindle, David ; Wajid, Ali A.; Wagner, Bianca; Shah, Mumtaz M.; Luijendijk, Elco
Abstract
Abstract The Himalaya, Kohistan, and Karakoram ranges comprise Proterozoic to Cenozoic crystalline complexes exposed in northern Pakistan. Numerous hot springs in the area indicate high subsurface temperatures, prompting a need to evaluate the local contribution of radiogenic heat to the general orogenic-related elevated geothermal gradients. The current study employed a portable gamma spectrometer to estimate the in-situ radiogenic heat production in the Nanga Parbat Massif, Kohistan–Ladakh batholith, and the Karakoram batholith. Heat production in the Nanga Parbat Massif is high, with a range from 0.2 to 10.8 µWm−3 and mean values of 4.6 ± 2.5 and 5.9 ± 1.9 µWm−3 for gneisses and granites, respectively. By contrast, the heat production is low in the Kohistan–Ladakh batholith, ranging from 0.1 to 3.1 µWm−3, with the highest mean of 2.0 ± 0.5 µWm−3 in granites. The Karakoram batholith shows a large variation in heat production, with values ranging from 0.4 to 20.3 µWm−3 and the highest mean of 8.4 ± 8.3 µWm−3 in granites. The in-situ radiogenic heat production values vary in different ranges and represent considerably higher values than those previously used for the thermal modeling of Himalaya. A conductive 1D thermal model suggests 93–108 °C hotter geotherms, respectively, at 10 and 20 km depths due to the thick heat-producing layer in the upper crust, resulting in a surface heat flow of 103 mWm−2. The present study provides first-order radiogenic heat production constraints for developing a thermal model for geothermal assessment.
Issue Date
27-October-2023
Journal
Geothermal Energy 
Organization
Abteilung Strukturgeologie und Geodynamik ; Geowissenschaftliches Zentrum ; Georg-August-Universität Göttingen 
Language
English
Sponsor
Open-Access-Publikationsfonds 2024

Reference

Citations


Social Media