Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable media

2010 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable media​
Bittihn, P.; Squires, A.; Luther, G.; Bodenschatz, E. ; Krinsky, V.; Parlitz, U. & Luther, S. ​ (2010) 
Philosophical Transactions of the Royal Society of London. A, Mathematical, Physical and Engineering Sciences368(1918) pp. 2221​-2236​.​ DOI: https://doi.org/10.1098/rsta.2010.0038 

Documents & Media

License

GRO License GRO License

Details

Authors
Bittihn, Philip; Squires, Amgad; Luther, Gisa; Bodenschatz, Eberhard ; Krinsky, Valentin; Parlitz, Ulrich; Luther, Stefan 
Abstract
Life-threatening cardiac arrhythmias are associated with the existence of stable and unstable spiral waves. Termination of such complex spatio-temporal patterns by local control is substantially limited by anchoring of spiral waves at natural heterogeneities. Far-field pacing (FFP) is a new local control strategy that has been shown to be capable of unpinning waves from obstacles. In this article, we investigate in detail the FFP unpinning mechanism for a single rotating wave pinned to a heterogeneity. We identify qualitatively different phase regimes of the rotating wave showing that the concept of vulnerability is important but not sufficient to explain the failure of unpinning in all cases. Specifically, we find that a reduced excitation threshold can lead to the failure of unpinning, even inside the vulnerable window. The critical value of the excitation threshold (below which no unpinning is possible) decreases for higher electric field strengths and larger obstacles. In contrast, for a high excitation threshold, the success of unpinning is determined solely by vulnerability, allowing for a convenient estimation of the unpinning success rate. In some cases, we also observe phase resetting in discontinuous phase intervals of the spiral wave. This effect is important for the application of multiple stimuli in experiments.
Issue Date
2010
Status
published
Publisher
Royal Soc
Journal
Philosophical Transactions of the Royal Society of London. A, Mathematical, Physical and Engineering Sciences 
ISSN
1364-503X

Reference

Citations


Social Media