Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection

2011 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection​
Willmann, R.; Lajunen, H. M.; Erbs, G.; Newman, M.-A.; Kolb, D.; Tsuda, K. & Katagiri, F. et al.​ (2011) 
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA108(49) pp. 19824​-19829​.​ DOI: https://doi.org/10.1073/pnas.1112862108 

Documents & Media

License

GRO License GRO License

Details

Authors
Willmann, Roland; Lajunen, Heini M.; Erbs, Gitte; Newman, Mari-Anne; Kolb, Dagmar; Tsuda, Kenichi; Katagiri, Fumiaki; Fliegmann, Judith; Bono, Jean-Jacques; Cullimore, Julie V.; Jehle, Anna K.; Goetz, Friedrich; Kulik, Andreas; Molinaro, Antonio; Lipka, Volker; Gust, Andrea A.; Nuernberger, Thorsten
Abstract
Recognition of microbial patterns by host pattern recognition receptors is a key step in immune activation in multicellular eukaryotes. Peptidoglycans (PGNs) are major components of bacterial cell walls that possess immunity-stimulating activities in metazoans and plants. Here we show that PGN sensing and immunity to bacterial infection in Arabidopsis thaliana requires three lysin-motif (LysM) domain proteins. LYM1 and LYM3 are plasma membrane proteins that physically interact with PGNs and mediate Arabidopsis sensitivity to structurally different PGNs from Gram-negative and Gram-positive bacteria. lym1 and lym3 mutants lack PGN-induced changes in transcriptome activity patterns, but respond to fungus-derived chitin, a pattern structurally related to PGNs, in a wild-type manner. Notably, lym1, lym3, and lym3 lym1 mutant genotypes exhibit supersusceptibility to infection with virulent Pseudomonas syringae pathovar tomato DC3000. Defects in basal immunity in lym3 lym1 double mutants resemble those observed in lym1 and lym3 single mutants, suggesting that both proteins are part of the same recognition system. We further show that deletion of CERK1, a LysM receptor kinase that had previously been implicated in chitin perception and immunity to fungal infection in Arabidopsis, phenocopies defects observed in lym1 and lym3 mutants, such as peptidoglycan insensitivity and enhanced susceptibility to bacterial infection. Altogether, our findings suggest that plants share with metazoans the ability to recognize bacterial PGNs. However, as Arabidopsis LysM domain proteins LYM1, LYM3, and CERK1 form a PGN recognition system that is unrelated to metazoan PGN receptors, we propose that lineage-specific PGN perception systems have arisen through convergent evolution.
Issue Date
2011
Status
published
Publisher
Natl Acad Sciences
Journal
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 
ISSN
0027-8424

Reference

Citations


Social Media