CaMKII-dependent SR Ca leak contributes to doxorubicin-induced impaired Ca handling in isolated cardiac myocytes

2011 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​CaMKII-dependent SR Ca leak contributes to doxorubicin-induced impaired Ca handling in isolated cardiac myocytes​
Sag, C. M.; Koehler, A. C.; Anderson, M. E.; Backs, J. & Maier, L. S.​ (2011) 
Journal of Molecular and Cellular Cardiology51(5) pp. 749​-759​.​ DOI: https://doi.org/10.1016/j.yjmcc.2011.07.016 

Documents & Media

License

GRO License GRO License

Details

Authors
Sag, Can Martin; Koehler, Anne C.; Anderson, Mark E.; Backs, Johannes; Maier, Lars. S.
Abstract
Doxorubicin (DOX) is one of the most effective chemotherapeutic agents, but cardiotoxicity limits DOX therapy. Although the mechanisms are not entirely understood, reactive oxygen species (ROS) appear to be involved in DOX cardiotoxicity. Ca/calmodulin dependent protein kinase II (CaMKII) can be activated by ROS through oxidation and is known to contribute to myocardial dysfunction through Ca leakage from the sarcoplasmic reticulum (SR). We hypothesized that CaMKII contributes to DOX-induced defects in intracellular Ca ([Ca](i)) handling. Cardiac myocytes were isolated from wild-type (WT) adult rat hearts and from mouse hearts lacking the predominant myocardial CaMKII delta(-/-), KO) vs. WT. Isolated cardiomyocytes were investigated 30 min after DOX (10 mu mol/L) superfusion, using epifluorescence and confocal microscopy. Intracellular ROS-generation ([ROS](i)) and [Ca](i) handling properties were assessed. In a subset of experiments, KN-93 or AIP (each 1 mu mol/L) were used to inhibit CaMKII. Melatonin (Mel, 100 mu mol/L) served as ROS-scavenger. Western blots were performed to determine the amount of CaMKII phosphorylation and oxidation. DOX increased [ROS](i) and led to significant diastolic [Ca](i) overload in rat myocytes. This was associated with reduced [Ca](i) transients, a 5.8-fold increased diastolic SR Ca leak and diminished SR Ca content. ROS-scavenging partially rescued Ca handling. Western blots revealed increased CaMKII phosphorylation, but not CaMKII oxidation after DOX. Pharmacological CaMKII inhibition attenuated diastolic [Ca](i) overload after DOX superfusion and led to partially restored [Ca](i) transients and SR Ca content, presumably due to reduced Ca spark frequency. In line with this concept, isoform-specific CaMKII delta-KO attenuated diastolic [Ca](i) overload and Ca spark frequency. DOX exposure induces CaMKII-dependent SR Ca leakage, which partially contributes to impaired cellular [Ca](i) homeostasis. Pharmacological and genetic CaMKII inhibition attenuated but did not completely abolish the effects of DOX on [Ca](i). In light of the clinical relevance of DOX, further investigations seem appropriate to determine if CaMKII inhibition could reduce DOX-induced cardiotoxicity. (C) 2011 Elsevier Ltd. All rights reserved.
Issue Date
2011
Status
published
Publisher
Academic Press Ltd- Elsevier Science Ltd
Journal
Journal of Molecular and Cellular Cardiology 
ISSN
1095-8584; 0022-2828

Reference

Citations


Social Media