Formalizing morphologically cryptic biological entities: New insights from DNA taxonomy, hybridization, and biogeography in the leafy liverwort Porella platyphylla (Jungermanniopsida, Porellales)

2011 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Formalizing morphologically cryptic biological entities: New insights from DNA taxonomy, hybridization, and biogeography in the leafy liverwort Porella platyphylla (Jungermanniopsida, Porellales)​
Heinrichs, J.; Kreier, H.-P.; Feldberg, K.; Schmidt, A. R.; Zhu, R.-L.; Shaw, B. & Shaw, A. J. et al.​ (2011) 
American Journal of Botany98(8) pp. 1252​-1262​.​ DOI: https://doi.org/10.3732/ajb.1100115 

Documents & Media

License

GRO License GRO License

Details

Authors
Heinrichs, Jochen; Kreier, Hans-Peter; Feldberg, Kathrin; Schmidt, Alexander R.; Zhu, Rui-Liang; Shaw, Blanka; Shaw, A. Jonathan; Wissemann, Volker
Abstract
Premise of the study: Recognition and formalization of morphologically cryptic species is a major challenge to modern taxonomy. An extreme example in this regard is the Holarctic Porella platyphylla s.l. (P. platyphylla plus P. platyphylloidea). Earlier studies demonstrated the presence of three isozyme groups and two molecular lineages. The present investigation was carried out to elucidate the molecular diversity of P. platyphylla s.l. and the distribution of its main clades, and to evaluate evidence for the presence of one vs. several species. Methods: We obtained chloroplast (atpB-rbcL, trnL-trnF) and nuclear ribosomal (ITS) DNA sequences from 101 Porella accessions (P. platyphylla s.l., P. x baueri, P. cordaeana, P. bolanderi, plus outgroup species) to estimate the phylogeny using parsimony and likelihood analyses. To facilitate the adoption of Linnean nomenclature for molecular lineages, we chose a DNA voucher as epitype. Key results: Phylogenies derived from chloroplast vs. nuclear data were congruent except for P. platyphylla s.l., including a North American lineage that was placed sister to P. cordaeana in the chloroplast DNA phylogeny but sister to the Holarctic P. platyphylla s.str. in the nuclear DNA phylogeny. European and North American accessions of P. cordaeana and P. platyphylla form sister clades. Conclusions: The genetic structure of P. platyphylla s.l. reflects morphologically cryptic or near cryptic speciation into Holarctic P. platyphylla s.str. and North American P. platyphylloidea. The latter species is possibly an ancient hybrid resulting from crossings of P. cordaeana and P. platyphylla s.str. and comprises several distinct molecular entities.
Issue Date
2011
Journal
American Journal of Botany 
ISSN
1537-2197; 0002-9122
Language
English

Reference

Citations


Social Media