Formation of Silicon Centered Spirocyclic Compounds: Reaction of N-Heterocyclic Stable Silylene with Benzoylpyridine, Diisopropyl Azodicarboxylate, and 1,2-Diphenylhydrazine

2011 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Formation of Silicon Centered Spirocyclic Compounds: Reaction of N-Heterocyclic Stable Silylene with Benzoylpyridine, Diisopropyl Azodicarboxylate, and 1,2-Diphenylhydrazine​
Azhakar, R.; Sarish, S. P.; Tavčar, G.; Roesky, H. W.; Hey, J.; Stalke, D. & Koley, D.​ (2011) 
Inorganic Chemistry50(7) pp. 3028​-3036​.​ DOI: https://doi.org/10.1021/ic102566c 

Documents & Media

Artikel2.72 MBAdobe PDF

License

Published Version

Special user license Goescholar License

Details

Authors
Azhakar, Ramachandran; Sarish, Sankaranarayana Pillai; Tavčar, Gašper; Roesky, Herbert W.; Hey, Jakob; Stalke, Dietmar; Koley, Debasis
Abstract
Three silicon centered spirocyclic compounds 1-3, possessing silicon fused six- and five-membered rings have been prepared by the reaction of NHSi (L) [L = CH{(C=CH2)-(CMe)(2,6-iPr(2)C(6)H(3)N)(2)}Si] with benzoylpyridine, diisopropyl azodicarboxylate, and 1,2-diphenylhydrazine, respectively, in a 1:1 ratio. The three spirocyclic compounds. (1 3) were obtained by three different pathways. The reaction of L with benzoylpyridine leads to the activation of the pyridine ring, and dearomatization occurred. Treatment of diisopropyl azodicarboxylate with L favors a [1 + 4]- rather than a [1 + 2]-cycloaddition product, and the azo compound was converted to hydrazone derivative. Finally the reaction of 1,2-diphenylhydrazine and L results in the elimination of hydrogen by activating one of the C-H bonds present in the phenyl ring. All three complexes 1-3 were characterized by single crystal X-ray structural analysis, NMR spectroscopy, EI-MS spectrometry, and elemental analysis. In addition the optimized structures of probable products and possible intermediates were investigated using density functional theory (DFT) calculations.
Issue Date
2011
Journal
Inorganic Chemistry 
ISSN
0020-1669
Sponsor
Deutsche Forschungsgemeinschaft; Alexander von Humboldt Stiftung

Reference

Citations


Social Media