Thermal stability of laser-produced iron nitrides

2001 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Thermal stability of laser-produced iron nitrides​
Han, M.; Carpene, E.; Landry, F.; Lieb, K.-P. & Schaaf, P.​ (2001) 
Journal of Applied Physics89(8) pp. 4619​-4624​.​ DOI: https://doi.org/10.1063/1.1354634 

Documents & Media

License

GRO License GRO License

Details

Authors
Han, M.; Carpene, Ettore; Landry, F.; Lieb, Klaus-Peter; Schaaf, Peter
Abstract
Laser nitriding is a very efficient method to improve the mechanical properties, surface hardness, corrosion, and wear resistance of iron and steel, with the advantages of a high nitrogen concentration, fast treatment, and accurate position control, and without any undesired heating effect on the substrate. However, the stability of laser-produced iron nitrides is still under investigation. This article reports investigations of the thermal stability of these iron nitrides upon annealing treatments, which were conducted both in vacuum and air. The phase and elemental composition of the nitride layers were deduced from conversion electron Mossbauer spectroscopy, resonant nuclear reaction analysis, and grazing incidence x-ray diffraction. The surface hardness was measured by the nanoindentation method. In laser-nitrided iron, two critical temperatures are found: at 523 K the predominant iron-nitride phase changes from the gamma/epsilon to the gamma (') phase. When the temperature exceeds 773 K, all of the nitrogen has escaped from the surface layer. For annealing in air the nitrogen escapes completely already at 673 K, where a thick oxide layer has formed. Stainless steel proved to be more stable than iron, and even up to 973 K no new phases or oxides were produced, here, also, only at 973 K the nitrogen content decreased significantly. Therefore, laser-nitrided stainless steel is well suited for applications. (C) 2001 American Institute of Physics.
Issue Date
2001
Status
published
Publisher
Amer Inst Physics
Journal
Journal of Applied Physics 
ISSN
0021-8979

Reference

Citations


Social Media