ELYS regulates the localization of LBR by modulating its phosphorylation state

2016 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​ELYS regulates the localization of LBR by modulating its phosphorylation state​
Mimura, Y.; Takagi, M.; Clever, M. & Imamoto, N.​ (2016) 
Journal of Cell Science129(22) pp. 4200​-4212​.​ DOI: https://doi.org/10.1242/jcs.190678 

Documents & Media

4200.full.pdf10.43 MBAdobe PDF

License

Published Version

Attribution 3.0 CC BY 3.0

Details

Authors
Mimura, Yasuhiro; Takagi, Masatoshi; Clever, Michaela; Imamoto, Naoko
Abstract
Lamin B receptor (LBR), an inner nuclear membrane (INM) protein, contributes to the functional integrity of the nucleus by tethering heterochromatin to the nuclear envelope. We have previously reported that the depletion of embryonic large molecule derived from yolk sac (ELYS; also known as AHCTF1), a component of the nuclear pore complex, from cells perturbs the localization of LBR to the INM, but little is known about the underlying molecular mechanism. In this study, we found that the depletion of ELYS promoted LBR phosphorylation at the residues known to be phosphorylated by cyclin-dependent kinase (CDK) and serine/arginine protein kinases 1 and 2 (SRPK1 and SRPK2, respectively). These phosphorylation events were most likely to be counter-balanced by protein phosphatase 1 (PP1), and the depletion of PP1 from cells consistently caused the mislocalization of LBR. These observations point to a new mechanism regulating the localization of LBR, which is governed by an ELYS-mediated phosphorylation network. This phosphorylation-dependent coordination between INM proteins and the nuclear pore complex might be important for the integrity of the nucleus.
Issue Date
2016
Status
published
Publisher
Company Of Biologists Ltd
Journal
Journal of Cell Science 
ISSN
1477-9137; 0021-9533

Reference

Citations


Social Media