TAp73 is a central transcriptional regulator of airway multiciliogenesis

2016 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​TAp73 is a central transcriptional regulator of airway multiciliogenesis​
Nemajerova, A.; Kramer, D.; Siller, S. S.; Herr, C.; Shomroni, O.; Pena, T. & Suazo, C. G. et al.​ (2016) 
Genes & Development30(11) pp. 1300​-1312​.​ DOI: https://doi.org/10.1101/gad.279836.116 

Documents & Media

License

GRO License GRO License

Details

Authors
Nemajerova, Alice; Kramer, Daniela; Siller, Saul S.; Herr, Christian; Shomroni, Orr; Pena, Tonatiuh; Suazo, Cristina Gallinas; Glaser, Katharina; Wildung, Merit; Steffen, Henrik; Sriraman, Anusha; Oberle, Fabian; Wienken, Magdalena; Hennion, Magali; Vidal, Ramon; Royen, Bettina; Alevra, Mihai; Schild, Detlev; Bals, Robert; Doenitz, Juergen; Riedel, Dietmar; Bonn, Stefan; Takemaru, Ken-Ichi; Moll, Ute M.; Lize, Muriel
Abstract
Motile multiciliated cells (MCCs) have critical roles in respiratory health and disease and are essential for cleaning inhaled pollutants and pathogens from airways. Despite their significance for human disease, the transcriptional control that governs multiciliogenesis remains poorly understood. Here we identify TP73, a p53 homolog, as governing the program for airway multiciliogenesis. Mice with TP73 deficiency suffer from chronic respiratory tract infections due to profound defects in ciliogenesis and complete loss of mucociliary clearance. Organotypic airway cultures pinpoint TAp73 as necessary and sufficient for basal body docking, axonemal extension, and motility during the differentiation of MCC progenitors. Mechanistically, cross-species genomic analyses and complete ciliary rescue of knockout MCCs identify TAp73 as the conserved central transcriptional integrator of multiciliogenesis. TAp73 directly activates the key regulators FoxJ1, Rfx2, Rfx3, and miR34bc plus nearly 50 structural and functional ciliary genes, some of which are associated with human ciliopathies. Our results position TAp73 as a novel central regulator of MCC differentiation.
Issue Date
2016
Status
published
Publisher
Cold Spring Harbor Lab Press, Publications Dept
Journal
Genes & Development 
ISSN
1549-5477; 0890-9369

Reference

Citations


Social Media