Detection of silent cells, synchronization and modulatory activity in developing cellular networks

2016 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Detection of silent cells, synchronization and modulatory activity in developing cellular networks​
Hjorth, J. J. J.; Dawitz, J.; Kroon, T.; Pires, J.; Dassen, V. J.; Berkhout, J. A. & Melero, J. E. et al.​ (2016) 
Developmental Neurobiology76(4) pp. 357​-374​.​ DOI: https://doi.org/10.1002/dneu.22319 

Documents & Media

License

GRO License GRO License

Details

Authors
Hjorth, Johannes J. J.; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J.; Berkhout, Janna A.; Melero, Javier Emperador; Nadadhur, Aish G.; Alevra, Mihai; Toonen, Ruud F.; Heine, Vivi M.; Mansvelder, Huibert D.; Meredith, Rhiannon M.
Abstract
Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature silent cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. (c) 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 357-374, 2016
Issue Date
2016
Status
published
Publisher
Wiley-blackwell
Journal
Developmental Neurobiology 
ISSN
1932-846X; 1932-8451

Reference

Citations


Social Media