Mechanisms of vortices termination in the cardiac muscle

2017 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Mechanisms of vortices termination in the cardiac muscle​
Hornung, D.; Biktashev, V. N.; Otani, N. F.; Shajahan, T. K.; Baig, T.; Berg, S. & Han, S. W. et al.​ (2017) 
Royal Society Open Science4(3) art. 170024​.​ DOI: https://doi.org/10.1098/rsos.170024 

Documents & Media

170024.full.pdf874.02 kBAdobe PDF

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Hornung, Daniel; Biktashev, V. N.; Otani, N. F.; Shajahan, T. K.; Baig, T.; Berg, S.; Han, Sang Who; Krinsky, V. I. ; Luther, Stefan 
Abstract
We propose a solution to a long-standing problem: how to terminate multiple vortices in the heart, when the locations of their cores and their critical time windows are unknown. We scan the phases of all pinned vortices in parallel with electric field pulses (E-pulses). We specify a condition on pacing parameters that guarantees termination of one vortex. For more than one vortex with significantly different frequencies, the success of scanning depends on chance, and all vortices are terminated with a success rate of less than one. We found that a similar mechanism terminates also a free (not pinned) vortex. A series of about 500 experiments with termination of ventricular fibrillation by E-pulses in pig isolated hearts is evidence that pinned vortices, hidden from direct observation, are significant in fibrillation. These results form a physical basis needed for the creation of new effective low energy defibrillation methods based on the termination of vortices underlying fibrillation.
Issue Date
2017
Journal
Royal Society Open Science 
Project
info:eu-repo/grantAgreement/EC/FP7/241526/EU//EUTRIGTREAT
SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz 
SFB 1002 | C03: Erholung nach Herzinsuffizienz: Analyse der transmuralen mechano-elektrischen Funktionsstörung 
Organization
Fakultät für Physik 
Working Group
RG Luther (Biomedical Physics) 
ISSN
2054-5703

Reference

Citations


Social Media