Fast propagation regions cause self-sustained reentry in excitable media

2017 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Fast propagation regions cause self-sustained reentry in excitable media​
Zykov, V.; Krekhov, A. & Bodenschatz, E. ​ (2017) 
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA114(6) pp. 1281​-1286​.​ DOI: https://doi.org/10.1073/pnas.1611475114 

Documents & Media

License

GRO License GRO License

Details

Authors
Zykov, Vladimir; Krekhov, Alexei; Bodenschatz, Eberhard 
Abstract
Self-sustained waves of electrophysiological activity can cause arrhythmia in the heart. These reentrant excitations have been associated with spiral waves circulating around either an anatomically defined weakly conducting region or a functionally determined core. Recently, an ablation procedure has been clinically introduced that stops atrial fibrillation of the heart by destroying the electrical activity at the spiral core. This is puzzling because the tissue at the anatomically defined spiral core would already be weakly conducting, and a further decrease should not improve the situation. In the case of a functionally determined core, an ablation procedure should even further stabilize the rotating wave. The efficacy of the procedure thus needs explanation. Here, we show theoretically that fundamentally in any excitable medium a region with a propagation velocity faster than its surrounding can act as a nucleation center for reentry and can anchor an induced spiral wave. Our findings demonstrate a mechanistic underpinning for the recently developed ablation procedure. Our theoretical results are based on a very general and widely used two-component model of an excitable medium. Moreover, the important control parameters used to realize conditions for the discovered phenomena are applicable to quite different multicomponent models.
Issue Date
2017
Status
published
Publisher
Natl Acad Sciences
Journal
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 
ISSN
0027-8424

Reference

Citations


Social Media