Facial nerve injury-induced disinhibition in the primary motor cortices of both hemispheres

2000 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Facial nerve injury-induced disinhibition in the primary motor cortices of both hemispheres​
Farkas, T.; Perge, J.; Kis, Z.; Wolff, J. R. & Toldi, J.​ (2000) 
European Journal of Neuroscience12(6) pp. 2190​-2194​.​ DOI: https://doi.org/10.1046/j.1460-9568.2000.00096.x 

Documents & Media

License

GRO License GRO License

Details

Authors
Farkas, T.; Perge, J.; Kis, Z.; Wolff, J. R.; Toldi, J.
Abstract
Unilateral facial nerve transection induces plastic reorganization of the somatotopic order in the primary motor cortex area (MI). This process is biphasic and starts with a transient disinhibition of connections between cortical areas in both hemispheres. Little is known about the underlying mechanisms. Here, cortical excitability has been studied by paired pulse electrical stimulation, applied either within the MI or peripherally to the trigeminal nerve, while the responses were recorded bilaterally in the MI. The ratios between the amplitudes of the second and first evoked potentials (EPs or fEPSPs) were taken as measures of the inhibitory capacity in the MI ipsilateral or contralateral to the nerve injury. A skin wound or unilateral facial nerve exposure immediately caused a transient facilitation, which was followed by a reset to some level of inhibition in the MI on both sides. After facial nerve transection, the first relatively mild reduction of inhibition started shortly (within 10 min) after denervation. This was followed by a second step, involving a stronger decrease in inhibition, 40-45 min later. Previous publications have proved that sensory nerve injury (deafferentation) induces disinhibition in corresponding areas of the sensory cortex. It is now demonstrated that sham operation and, to an even greater extent, unilateral transection of the purely motoric facial nerve (deefferentation), each induce extended disinhibition in the MIs on both sides.
Issue Date
2000
Status
published
Publisher
Blackwell Science Ltd
Journal
European Journal of Neuroscience 
ISSN
0953-816X

Reference

Citations


Social Media