High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress

2004 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress​
Dihazi, H.; Kessler, R. & Eschrich, K.​ (2004) 
Journal of Biological Chemistry279(23) pp. 23961​-23968​.​ DOI: https://doi.org/10.1074/jbc.M312974200 

Documents & Media

License

GRO License GRO License

Details

Authors
Dihazi, Hassan; Kessler, R.; Eschrich, K.
Abstract
In response to changes in the environment, yeast cells coordinate intracellular activities to optimize survival and proliferation. The transductions of diverse extracellular stimuli are exerted through multiple mitogen-activated protein kinase ( MAPK) cascades. The high osmolarity glycerol ( HOG) MAPK pathway is activated by increased environmental osmolarity and results in a rise of the cellular glycerol concentration to adapt the intracellular osmotic pressure. We studied the importance of the short time regulation of glycolysis under hyperosmotic stress for the survival and proliferation of yeast cells. A stimulation of the HOG-MAPK pathway by increasing the medium osmolarity through addition of salt or glucose to cultivated yeast leads to an activation of 6-phosphofructo-2-kinase (PFK2), which is accompanied by a complex phosphorylation pattern of the enzyme. An increase in medium osmolarity with 5% NaCl activates PFK2 3-fold over the initial value. This change in the activity is the result of a 4-fold phosphorylation of the enzyme mediated by protein kinases from the HOG-MAPK pathway. In the case of hyperosmolar glucose a 5-fold PFK2 activation was achieved by a single phosphorylation with protein kinase A near the carboxyl terminus of the protein on Ser(644) and an additional 5-fold phosphorylation within the same amino-terminal fragment as in the presence of salt. The effect of hyperosmolar glucose is the result of an activation of the Ras-cAMP pathway together with the HOG-MAPK pathway. The activation of PFK2 leads to an activation of the upper part of glycolysis, which is a precondition for glycerol accumulation. Yeast cells containing PFK2 accumulate three times more glycerol than cells lacking PFK2, which are not able to grow under hypertonic stress.
Issue Date
2004
Status
published
Publisher
Amer Soc Biochemistry Molecular Biology Inc
Journal
Journal of Biological Chemistry 
ISSN
0021-9258

Reference

Citations


Social Media