Bidirectional modulation of primary visual cortex excitability: A combined tDCS and rTMS study

2007 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Bidirectional modulation of primary visual cortex excitability: A combined tDCS and rTMS study​
Lang, N.; Siebner, H. R.; Chadaide, Z.; Boros, K.; Nitsche, M. A.; Rothwell, J. C. & Paulus, W. J. et al.​ (2007) 
Investigative Ophthalmology & Visual Science48(12) pp. 5782​-5787​.​ DOI: https://doi.org/10.1167/iovs.07-0706 

Documents & Media

License

GRO License GRO License

Details

Authors
Lang, Nicolas; Siebner, Hartwig Roman; Chadaide, Zoltan; Boros, Klara; Nitsche, Michael A.; Rothwell, John C.; Paulus, Walter J.; Antal, Andrea
Abstract
PURPOSE. In the motor cortex (M1), transcranial direct current stimulation (tDCS) can effectively prime excitability changes that are evoked by a subsequent train of repetitive transcranial magnetic stimulation (rTMS). The authors examined whether tDCS can also prime the cortical response to rTMS in the human visual cortex. METHODS. In nine healthy subjects, the authors applied tDCS ( 10 minutes; +/- 1 mA) to the occipital cortex. After tDCS, they applied a 20-second train of 5 Hz rTMS at 90% of phosphene threshold ( PT) intensity. A similar rTMS protocol had previously demonstrated a strong priming effect of tDCS on rTMSinduced excitability changes in M1. PTs were determined with single-pulse TMS before and immediately after tDCS and twice after rTMS. RESULTS. Anodal tDCS led to a transient decrease in PT, and subsequent 5 Hz rTMS induced an earlier return of the PT back to baseline. Cathodal tDCS produced a short-lasting increase in PT, but 5 Hz rTMS did not influence the tDCS-induced increase in PT. In a control experiment on four subjects, a 20-second train of occipital 5 Hz rTMS left the PT unchanged, whereas a 60-second train produced a similar decrease in PT as anodal tDCS alone. CONCLUSIONS. Compared with previous work on the M1, tDCS and rTMS of the visual cortex only produce short-lasting changes in cortical excitability. Moreover, the priming effects of tDCS on subsequent rTMS conditioning are relatively modest. These discrepancies point to substantial differences in the modifiability of human motor and visual cortex.
Issue Date
2007
Status
published
Publisher
Assoc Research Vision Ophthalmology Inc
Journal
Investigative Ophthalmology & Visual Science 
ISSN
0146-0404

Reference

Citations


Social Media