Boosting focally-induced brain plasticity by dopamine

2008 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Boosting focally-induced brain plasticity by dopamine​
Kuo, M.-F.; Paulus, W. J. & Nitsche, M. A.​ (2008) 
Cerebral Cortex18(3) pp. 648​-651​.​ DOI: https://doi.org/10.1093/cercor/bhm098 

Documents & Media

License

GRO License GRO License

Details

Authors
Kuo, Min-Fang; Paulus, Walter J.; Nitsche, Michael A.
Abstract
Dopamine (DA) simultaneously produces both excitation and inhibition in the human cortex. In order to shed light on the functional significance of these seemingly opposing effects, we administered the DA precursor levodopa (L-dopa) to healthy subjects in conjunction with 2 neuroplasticity-inducing motor cortex stimulation protocols. Transcranial direct current stimulation (tDCS) induces cortical excitability enhancement by anodal and depression by cathodal brain polarization, which is not restricted to specific subgroups of synapses. In contrast, paired associative stimulation (PAS) induces focal excitability enhancements of somatosensory and motor cortical neuronal synaptic connections. Here, we show that administering L-dopa turns the unspecific excitability enhancement caused by anodal tDCS into inhibition and prolongs the cathodal tDCS-induced excitability diminution. Conversely, it stabilizes the PAS-induced synapse-specific excitability increase. Most importantly, it prolongs all of these aftereffects by a factor of about 20. Hereby, DA focuses synapse-specific excitability-enhancing neuroplasticity in human cortical networks.
Issue Date
2008
Status
published
Publisher
Oxford Univ Press Inc
Journal
Cerebral Cortex 
ISSN
1047-3211

Reference

Citations


Social Media