Noradrenergic modulation of calcium currents and synaptic transmission in the olfactory bulb of Xenopus laevis tadpoles.

2001-03-01 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Noradrenergic modulation of calcium currents and synaptic transmission in the olfactory bulb of Xenopus laevis tadpoles.​
Czesnik, D.; Nezlin, L.; Rabba, J.; Müller, B. & Schild, D.​ (2001) 
The European journal of neuroscience13(6) pp. 1093​-100​.​

Documents & Media

Artikel380.85 kBAdobe PDF

License

Published Version

Special user license Goescholar License

Details

Authors
Czesnik, D.; Nezlin, L.; Rabba, J.; Müller, B.; Schild, D.
Abstract
Norepinephrine (NE) has various modulatory roles in both the peripheral and the central nervous systems. Here we investigate the function of the locus coeruleus efferent fibres in the olfactory bulb of Xenopus laevis tadpoles. In order to distinguish unambiguously between mitral cells and granule cells of the main olfactory bulb and the accessory olfactory bulb, we used a slice preparation. The two neuron types were distinguished on the basis of their location in the slice, their typical branching pattern and by electrophysiological criteria. At NE concentrations lower than 5 microM there was only one effect of NE upon voltage-gated conductances; NE blocked a high-voltage-activated Ca(2+)-current in mitral cells of both the main and the accessory olfactory bulbs. No such effect was observed in granule cells. The effect of NE upon mitral cell Ca(2+)-currents was mimicked by the alpha(2)-receptor agonists clonidine and alpha-methyl-NE. As a second effect, NE or clonidine blocked spontaneous synaptic activity in granule cells of both the main and the accessory olfactory bulbs. NE or clonidine also blocked the spontaneous synaptic activity in mitral cells of either olfactory bulb. The amplitude of glutamate-induced currents in granule cells was modulated neither by clonidine nor by alpha-methyl-NE. Taken together, the main effect of the noradrenergic, presynaptic, alpha(2)-receptor-mediated block of Ca(2)+-currents in mitral cells appeared to be a wide-spread disinhibition of mitral cells in the accessory olfactory bulb as well as in the main olfactory bulb.
Issue Date
1-March-2001
Journal
The European journal of neuroscience 
Organization
Universitätsmedizin Göttingen
ISSN
0953-816X
Language
English

Reference

Citations