Few-nm tracking of current-driven magnetic vortex orbits using ultrafast Lorentz microscopy

2020 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Few-nm tracking of current-driven magnetic vortex orbits using ultrafast Lorentz microscopy​
Möller, M.; Gaida, J. H.; Schäfer, S. & Ropers, C. ​ (2020) 
Communications Physics3(1).​ DOI: https://doi.org/10.1038/s42005-020-0301-y 

Documents & Media

s42005-020-0301-y.pdf1.22 MBAdobe PDF42005_2020_301_MOESM1_ESM.pdf992.49 kBAdobe PDF42005_2020_301_MOESM2_ESM.docx13.66 kBMicrosoft Word XML42005_2020_301_MOESM5_ESM.pdf169.88 kBAdobe PDF

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Möller, Marcel; Gaida, John H.; Schäfer, Sascha; Ropers, Claus 
Abstract
Transmission electron microscopy is one of the most powerful techniques to characterize nanoscale magnetic structures. In light of the importance of fast control schemes of magnetic states, time-resolved microscopy techniques are highly sought after in fundamental and applied research. Here, we implement time-resolved Lorentz imaging in combination with synchronous radio-frequency excitation using an ultrafast transmission electron microscope. As a model system, we examine the current-driven gyration of a vortex core in a 2 μm-sized magnetic nanoisland. We record the trajectory of the vortex core for continuous-wave excitation, achieving a localization precision of ±2 nm with few-minute integration times. Furthermore, by tracking the core position after rapidly switching off the current, we find a transient increase of the free oscillation frequency and the orbital decay rate, both attributed to local disorder in the vortex potential.
Issue Date
2020
Journal
Communications Physics 
Project
SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen 
SFB 1073 | Topical Area A | A05 Nanoskalige Untersuchung raumzeitlicher Relaxation in heterogenen Systemen mit ultraschneller Transmissionselektronenmikroskopie 
ISSN
2399-3650
Language
English

Reference

Citations


Social Media