High-resolution Scanning Transmission EBIC Analysis of Misfit Dislocations at Perovskite pn-Heterojunctions

2019 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​High-resolution Scanning Transmission EBIC Analysis of Misfit Dislocations at Perovskite pn-Heterojunctions​
Meyer, T. ; Kressdorf, B. ; Lindner, J.; Peretzki, P. ; Roddatis, V. ; Jooss, C.   & Seibt, M. ​ (2019) 
Journal of Physics: Conference Series1190(1) art. 012009​.​ DOI: https://doi.org/10.1088/1742-6596/1190/1/012009 

Documents & Media

JPCS_1190_1_012009.pdf927.71 kBUnknown

License

Published Version

Attribution 3.0 CC BY 3.0

Details

Authors
Meyer, T. ; Kressdorf, B. ; Lindner, J.; Peretzki, P. ; Roddatis, V. ; Jooss, Christian ; Seibt, Michael 
Abstract
Abstract Fundamental losses of photovoltaic energy conversion are transmission of sub band gap photons and thermalisation which are the underlying physics of the Shockley-Queisser limit defining maximum conversion efficiency of single-junction solar cells. Strongly correlated materials such as perovskites are promising candidates to exceed this limit by exploiting (i) long wavelength light absorption and (ii) the existence of long-living intraband excitations indicating that harvesting hot excess carriers might be feasible in such systems. In this work, we study pn-heterojunctions produced from Pr1-xCaxMnO3 on SrTi1-yNbyO3 by means of microscopic techniques. Such systems exhibit relevant quantities such as space charge layer width, screening lengths and excess carrier diffusion lengths in the 1-10 nm range which makes the use of standard methods such as electron beam induced current a challenging task. We report scanning transmission electron beam induced current experiments of misfit dislocations at the heterojunction. The dislocation-induced reduction of the charge collection is studied with nanometer spatial resolution. Effects of surface recombination and the heterojunction electric field are discussed.
Issue Date
2019
Journal
Journal of Physics: Conference Series 
Project
SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen 
SFB 1073 | Topical Area B | B02 Photonen-getriebener Energietransfer über Grenzflächen zwischen Materialien mit starken Korrelationen 
SFB 1073 | Topical Area Z | Z02 Hochauflösende Charakterisierung von Grenzflächen 
Organization
Fakultät für Physik ; Institut für Materialphysik 
ISSN
1742-6588
eISSN
1742-6596
ISSN
1742-6588
eISSN
1742-6596
Language
English

Reference

Citations


Social Media