Efficiency of ultrafast optically induced spin transfer in Heusler compounds

2020 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Efficiency of ultrafast optically induced spin transfer in Heusler compounds​
Steil, D.; Walowski, J.; Gerhard, F.; Kiessling, T.; Ebke, D.; Thomas, A. & Kubota, T. et al.​ (2020) 
Physical Review Research2(2).​ DOI: https://doi.org/10.1103/PhysRevResearch.2.023199 

Documents & Media

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Steil, Daniel; Walowski, Jakob; Gerhard, Felicitas; Kiessling, Tobias; Ebke, Daniel; Thomas, Andy; Kubota, Takahide; Oogane, Mikihiko; Ando, Yasuo; Otto, Johannes; Mann, Andreas; Hofherr, Moritz; Elliott, Peter; Dewhurst, John Kay; Reiss, Günter; Molenkamp, Laurens; Aeschlimann, Martin; Cinchetti, Mirko; Münzenberg, Markus ; Sharma, Sangeeta; Mathias, Stefan 
Abstract
Optically induced spin transfer (OISTR) is a pathway to control magnetization dynamics in complex materials on femto- to attosecond timescales. The direct interaction of the laser field with the material creates transient nonequilibrium states, which can exhibit an efficient spin transfer between different magnetic subsystems. How far this spin manipulation via OISTR is a general phenomenon or restricted to a subset of materials with specific properties is an open experimental and theoretical question. Using time-resolved magneto-optical Kerr measurements and time-dependent density functional theory we investigate OISTR in Heusler compounds. We show that the half-Heusler materials NiMnSb and CoMnSb exhibit strong signatures of OISTR, whereas this is less pronounced in the full-Heusler compounds Co2MnSi, Co2FeSi, and Co2FeAl in agreement with ab initio calculations. Our work opens up a systematic path for coherent manipulation of spin dynamics by direct light-matter interaction.
Issue Date
2020
Journal
Physical Review Research 
Project
SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen 
SFB 1073 | Topical Area A | A06 
ISSN
2643-1564
eISSN
2643-1564
Language
English

Reference

Citations


Social Media