Macromolecular and electrical coupling between inner hair cells in the rodent cochlea

2020 | Zeitschriftenartikel; Forschungsarbeit. Eine Publikation mit Affiliation zur Georg-August-Universität Göttingen.

Spring zu: Zitieren & Links | Dokumente & Medien | Details | Versionsgeschichte

Zitiervorschlag

​Macromolecular and electrical coupling between inner hair cells in the rodent cochlea​
Jean, P.; Anttonen, T. ; Michanski, S.; de Diego, A. M. G.; Steyer, A. M.; Neef, A.   & Oestreicher, D. u.a.​ (2020) 
Nature Communications11(1).​ DOI: https://doi.org/10.1038/s41467-020-17003-z 

Dokumente & Medien

Lizenz

Published Version

Attribution 4.0 CC BY 4.0

Details

Autor(en)
Jean, Philippe; Anttonen, Tommi ; Michanski, Susann; de Diego, Antonio M. G.; Steyer, Anna M.; Neef, Andreas ; Oestreicher, David; Kroll, Jana; Nardis, Christos; Pangršič, Tina ; Möbius, Wiebke ; Ashmore, Jonathan; Wichmann, Carolin ; Moser, Tobias 
Zusammenfassung
Inner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other. We report that, upon developmental maturation, in mice 30% of the IHCs are electrochemically coupled in ‘mini-syncytia’. This coupling permits transfer of fluorescently-labeled metabolites and macromolecular tracers. The membrane capacitance, Ca2+-current, and resting current increase with the number of dye-coupled IHCs. Dual voltage-clamp experiments substantiate low resistance electrical coupling. Pharmacology and tracer permeability rule out coupling by gap junctions and purinoceptors. 3D electron microscopy indicates instead that IHCs are coupled by membrane fusion sites. Consequently, depolarization of one IHC triggers presynaptic Ca2+-influx at active zones in the entire mini-syncytium. Based on our findings and modeling, we propose that IHC-mini-syncytia enhance sensitivity and reliability of cochlear sound encoding.
Erscheinungsdatum
2020
Zeitschrift
Nature Communications 
Project
EXC 2067: Multiscale Bioimaging 
Arbeitsgruppe
RG Moser (Molecular Anatomy, Physiology and Pathology of Sound Encoding) 
RG Möbius 
RG Pangršič Vilfan (Experimental Otology) 
RG Wichmann (Molecular Architecture of Synapses) 
eISSN
2041-1723
Sprache
Englisch

Export Metadaten

Referenzen

Zitationen


Social Media