Regulation of a subset of release-ready vesicles by the presynaptic protein Mover

2021 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Regulation of a subset of release-ready vesicles by the presynaptic protein Mover​
Pofantis, E.; Neher, E.   & Dresbach, T. ​ (2021) 
Proceedings of the National Academy of Sciences118(3) pp. e2022551118​.​ DOI: https://doi.org/10.1073/pnas.2022551118 

Documents & Media

pnas.2022551118.pdf1.69 MBAdobe PDF

License

Published Version

Attribution-NonCommercial-NoDerivs 4.0 CC BY-NC-ND 4.0

Details

Authors
Pofantis, Ermis; Neher, Erwin ; Dresbach, Thomas 
Abstract
Neurotransmitter release occurs by regulated exocytosis from synaptic vesicles (SVs). Evolutionarily conserved proteins mediate the essential aspects of this process, including the membrane fusion step and priming steps that make SVs release-competent. Unlike the proteins constituting the core fusion machinery, the SV protein Mover does not occur in all species and all synapses. Its restricted expression suggests that Mover may modulate basic aspects of transmitter release and short-term plasticity. To test this hypothesis, we analyzed synaptic transmission electrophysiologically at the mouse calyx of Held synapse in slices obtained from wild-type mice and mice lacking Mover. Spontaneous transmission was unaffected, indicating that the basic release machinery works in the absence of Mover. Evoked release and vesicular release probability were slightly reduced, and the paired pulse ratio was increased in Mover knockout mice. To explore whether Mover’s role is restricted to certain subpools of SVs, we analyzed our data in terms of two models of priming. A model assuming two SV pools in parallel showed a reduced release probability of so-called “superprimed vesicles” while “normally primed” ones were unaffected. For the second model, which holds that vesicles transit sequentially from a loosely docked state to a tightly docked state before exocytosis, we found that knocking out Mover selectively decreased the release probability of tight state vesicles. These results indicate that Mover regulates a subclass of primed SVs in the mouse calyx of Held.
Issue Date
2021
Journal
Proceedings of the National Academy of Sciences 
Project
EXC 2067: Multiscale Bioimaging 
Working Group
RG Neher (Membrane Biophysics) 
ISSN
0027-8424
eISSN
1091-6490
Language
English

Reference

Citations


Social Media