Nanoscale mapping of ultrafast magnetization dynamics with femtosecond Lorentz microscopy

2017-10-09 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Nanoscale mapping of ultrafast magnetization dynamics with femtosecond Lorentz microscopy​
da Silva, N. R.; Möller, M.; Feist, A. ; Ulrichs, H.; Ropers, C.   & Schäfer, S.​ (2017) 
Physical Review. X, Expanding Access8(3) art. 031052​.​ DOI: https://doi.org/10.1103/PhysRevX.8.031052 

Documents & Media

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
da Silva, Nara Rubiano; Möller, Marcel; Feist, Armin ; Ulrichs, Henning; Ropers, Claus ; Schäfer, Sascha
Abstract
Novel time-resolved imaging techniques for the investigation of ultrafast nanoscale magnetization dynamics are indispensable for further developments in light-controlled magnetism. Here, we introduce femtosecond Lorentz microscopy, achieving a spatial resolution below 100 nm and a temporal resolution of 700 fs, which gives access to the transiently excited state of the spin system on femtosecond timescales and its subsequent relaxation dynamics. We demonstrate the capabilities of this technique by spatio-temporally mapping the light-induced demagnetization of a single magnetic vortex structure and quantitatively extracting the evolution of the magnetization field after optical excitation. Tunable electron imaging conditions allow for an optimization of spatial resolution or field sensitivity, enabling future investigations of ultrafast internal dynamics of magnetic topological defects on 10-nanometer length scales.
Issue Date
9-October-2017
Journal
Physical Review. X, Expanding Access 
Project
SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen 
SFB 1073 | Topical Area A | A05 Nanoskalige Untersuchung raumzeitlicher Relaxation in heterogenen Systemen mit ultraschneller Transmissionselektronenmikroskopie 
SFB 1073 | Topical Area A | A06 
ISSN
2160-3308
Language
English

Reference

Citations


Social Media