Genetics of intellectual disability in consanguineous families

2018 | journal article

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Genetics of intellectual disability in consanguineous families​
Hu, H.; Kahrizi, K.; Musante, L.; Fattahi, Z.; Herwig, R.; Hosseini, M. & Oppitz, C. et al.​ (2018) 
Molecular Psychiatry,.​ DOI: https://doi.org/10.1038/s41380-017-0012-2 

Documents & Media

License

GRO License GRO License

Details

Authors
Hu, Hao; Kahrizi, Kimia; Musante, Luciana; Fattahi, Zohreh; Herwig, Ralf; Hosseini, Masoumeh; Oppitz, Cornelia; Abedini, Seyedeh Sedigheh; Suckow, Vanessa; Larti, Farzaneh; Beheshtian, Maryam; Lipkowitz, Bettina; Akhtarkhavari, Tara; Mehvari, Sepideh; Otto, Sabine; Mohseni, Marzieh; Arzhangi, Sanaz; Jamali, Payman; Mojahedi, Faezeh; Taghdiri, Maryam; Papari, Elaheh; Soltani Banavandi, Mohammad Javad; Akbari, Saeide; Tonekaboni, Seyed Hassan; Dehghani, Hossein; Ebrahimpour, Mohammad Reza; Bader, Ingrid; Davarnia, Behzad; Cohen, Monika; Khodaei, Hossein; Albrecht, Beate; Azimi, Sarah; Zirn, Birgit; Bastami, Milad; Wieczorek, Dagmar; Bahrami, Gholamreza; Keleman, Krystyna; Vahid, Leila Nouri; Tzschach, Andreas; Gärtner, Jutta ; Gillessen-Kaesbach, Gabriele; Varaghchi, Jamileh Rezazadeh; Timmermann, Bernd; Pourfatemi, Fatemeh; Jankhah, Aria; Chen, Wei; Nikuei, Pooneh; Kalscheuer, Vera M.; Oladnabi, Morteza; Wienker, Thomas F.; Ropers, Hans-Hilger; Najmabadi, Hossein
Abstract
Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.
Issue Date
2018
Journal
Molecular Psychiatry 
ISSN
1359-4184
Language
English

Reference

Citations


Social Media