Optogenetic Monitoring of the Glutathione Redox State in Engineered Human Myocardium

2019 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Optogenetic Monitoring of the Glutathione Redox State in Engineered Human Myocardium​
Trautsch, I.; Heta, E.; Soong, P. L. ; Levent, E. ; Nikolaev, V. O. ; Bogeski, I.   & Katschinski, D. M.  et al.​ (2019) 
Frontiers in Physiology10.​ DOI: https://doi.org/10.3389/fphys.2019.00272 

Documents & Media

Data_Sheet_1.PDF62.46 kBUnknownfphys-10-00272-g001.tif1.61 MBUnknownfphys-10-00272-g002.tif1.98 MBUnknownfphys-10-00272-g003.tif2.36 MBUnknownfphys-10-00272-g004.tif1.67 MBUnknownfphys-10-00272-g005.tif1.14 MBUnknownfphys-10-00272.pdf7.45 MBUnknown

License

Details

Authors
Trautsch, Irina; Heta, Eriona; Soong, Poh Loong ; Levent, Elif ; Nikolaev, Viacheslav O. ; Bogeski, Ivan ; Katschinski, Dörthe M. ; Mayr, Manuel; Zimmermann, Wolfram-Hubertus 
Abstract
Redox signaling affects all aspects of cardiac function and homeostasis. With the development of genetically encoded fluorescent redox sensors, novel tools for the optogenetic investigation of redox signaling have emerged. Here, we sought to develop a human heart muscle model for in-tissue imaging of redox alterations. For this, we made use of (1) the genetically-encoded Grx1-roGFP2 sensor, which reports changes in cellular glutathione redox status (GSH/GSSG), (2) human embryonic stem cells (HES2), and (3) the engineered heart muscle (EHM) technology. We first generated HES2 lines expressing Grx1-roGFP2 in cytosol or mitochondria compartments by TALEN-guided genomic integration. Grx1-roGFP2 sensor localization and function was verified by fluorescence imaging. Grx1-roGFP2 HES2 were then subjected to directed differentiation to obtain high purity cardiomyocyte populations. Despite being able to report glutathione redox potential from cytosol and mitochondria, we observed dysfunctional sarcomerogenesis in Grx1-roGFP2 expressing cardiomyocytes. Conversely, lentiviral transduction of Grx1-roGFP2 in already differentiated HES2-cardiomyocytes and human foreskin fibroblast was possible, without compromising cell function as determined in EHM from defined Grx1-roGFP2-expressing cardiomyocyte and fibroblast populations. Finally, cell-type specific GSH/GSSG imaging was demonstrated in EHM. Collectively, our observations suggests a crucial role for redox signaling in cardiomyocyte differentiation and provide a solution as to how this apparent limitation can be overcome to enable cell-type specific GSH/GSSG imaging in a human heart muscle context.
Issue Date
2019
Journal
Frontiers in Physiology 
Project
SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz 
SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien 
SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle 
SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente 
SFB 1190 | P17: Die Rolle mitochondrialer Kontaktstellen im Rahmen tumorrelevanter Calcium- und Redox-Signalwege 
Working Group
RG Nikolaev (Cardiovascular Research Center) 
RG Zimmermann (Engineered Human Myocardium) 
RG Bogeski 
eISSN
1664-042X
Language
English

Reference

Citations


Social Media