Enhanced late INa induces proarrhythmogenic SR Ca leak in a CaMKII-dependent manner

2014 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Enhanced late INa induces proarrhythmogenic SR Ca leak in a CaMKII-dependent manner​
Sag, C. M.; Mallwitz, A.; Wagner, S. ; Hartmann, N. ; Schotola, H.; Fischer, T. H.   & Ungeheuer, N. et al.​ (2014) 
Journal of Molecular and Cellular Cardiology76 pp. 94​-105​.​ DOI: https://doi.org/10.1016/j.yjmcc.2014.08.016 

Documents & Media

License

GRO License GRO License

Details

Authors
Sag, Can M.; Mallwitz, Anika; Wagner, Stefan ; Hartmann, Nico ; Schotola, Hanna; Fischer, Thomas H. ; Ungeheuer, Nele; Herting, Jonas ; Shah, Ajay M.; Maier, Lars S. ; Sossalla, Samuel ; Unsöld, Bernhard
Abstract
Objective: Enhanced late Na current (late I-Na) induces Na-dependent Ca overload as well as proarrhythmogenic events on the cellular level that include spatio-temporally uncoordinated diastolic Ca release from the sarcoplasmic reticulum (SR) and delayed afterdepolarizations (DADs). The Ca/calmodulin-dependent protein kinase II (CaMKII) gets activated upon increases in [Ca](1) and mediates diastolic SR Ca leak as well as DADs. Rationale: We hypothesized that increased late I-Na (in disease-comparable ranges) exerts proarrhythmogenic events in isolated ventricular mouse myocytes in a manner depending on CaMKII-dependent SR Ca leak. We further tested whether inhibition of disease-related late I-Na may reduce proarrhythmogenic SR Ca leak in myocytes from failing human hearts. Methods: Ventricular myocytes were isolated from healthy wildtype (WT), failing CaMKII delta c transgenic (TG) mouse, and failing human hearts. ATX-II (0.25-10 nmol/L) was used to enhance late I-Na. Spontaneous Ca loss from the SR during diastole (Ca sparks), DADs, non-triggered diastolic Ca transients in myocytes and premature beats of isometrically twitching papillary muscles were used as readouts for proarrhythmogenic events. CaMKII autophosphorylation was assessed by immunoblots. Late I-Na was inhibited using ranolazine (Ran, 10 mu mol/L) or 'FIX (2 mu mol/L), and CaMKII by KN-93 (1 mu mol/L) or ALP (1 mu mol/L). Results: In WTmyocytes, sub-nanomolar ATX-II exposure (0.5 nmol/L) enhanced late I-Na by -60%, which resulted in increased diastolic SR Ca loss despite unaltered SR Ca content. In parallel, DADs and non-triggered diastolic Ca transients arose. Inhibition of enhanced late I-Na by RAN or TTX significantly attenuated diastolic SR Ca loss and suppressed DADs as well as mechanical altemans in mouse and diastolic SR Ca loss in failing human myocytes. ATX-II caused Ca-dependent CaMKII-activation without changes in protein expression, which was reversible by Ran or AIP. Conversely, CaMKII-inhibition decreased diastolic SR Ca loss, DADs and non-triggered diastolic Ca transients despite ATX-II-exposure. Finally, failing mouse myocytes with increased CaMKII activity (TG CaMKII delta c) showed an even aggravated diastolic SR Ca loss that was associated with an increased frequency of non-triggered diastolic Ca transients upon enhanced late I-Na. Conclusions: Increased late 'Na (in disease-comparable ranges) induces proarrhythmogenic events during diastole in healthy and failing mouse myocytes, which are mediated via CaMKII-dependent SR Ca loss. Inhibition of late I-Na not only attenuated these cellular arrhythmias in mouse myocytes but also in failing human myocytes indicating some antiarrhythmic potential for an inhibition of the elevated late I-Na/CaMKII signaling pathway in this setting. (c) 2014 Elsevier Ltd. All rights reserved.
Issue Date
2014
Journal
Journal of Molecular and Cellular Cardiology 
Project
SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz 
SFB 1002 | A03: Bedeutung CaMKII-abhängiger Mechanismen für die Arrhythmogenese bei Herzinsuffizienz 
Working Group
RG L. Maier (Experimentelle Kardiologie) 
RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung) 
RG T. Fischer 
ISSN
1095-8584; 0022-2828
Language
English

Reference

Citations


Social Media